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Thermal Casimir effect with soft boundary conditions
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We consider the thermal Casimir effect in systems of parallel plates coupled to a massless free field theory
via quadratic interaction terms which suppress (i) the field on the plates and (ii) the gradient of the field in the
plane of the plates. These boundary interactions correspond to (i) the presence of an electrolyte in the plates
and (ii) a uniform field of dipoles, in the plates, which are polarizable in the plane of the plates. These
boundary interactions lead to Robin-type boundary conditions in the case where there is no field outside the
two plates. In the appropriate limit, in both cases Dirichlet boundary conditions are obtained but we show that
in case (i) the Dirichlet limit breaks down at short interplate distances and in (ii) it breaks down at large
distances. The behavior of the two plate system is also seen to be highly dependent on whether the system is
open or closed. In addition we analyze the Casimir force on a third plate placed between two outer plates. The
force acting on the central plate is shown to be highly sensitive to whether or not the fluctuating scalar field is

present in the region exterior to the two confining plates.
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I. INTRODUCTION

The Casimir effect is often described in terms of how a
boundary condition modifies the fluctuations of a field [1,2],
the classic example being the case of the modification of the
vacuum energy of the electromagnetic field between two
conducting plates. However, boundary conditions often arise
from the consideration of ideal media such perfect conduc-
tors. In reality the Casimir force is generated by interactions
of the plates via the electromagnetic field, the material prop-
erties of the plates being coupled to the field. This point of
view is embodied in the Lifshitz formulation of van der
Waals interactions between macroscopic bodies [3]. Also in
the study of the critical Casimir force energetic boundary
terms arise naturally in spin models due to surface interac-
tions and fields [4,5]. In this paper we analyze the fluctuation
induced interactions due to a free massless field theory in the
presence of planes with quadratic interactions in the field
variable. In an electrostatic analogy one case is equivalent to
the field interacting with dipoles confined to the plane and
the other case is equivalent to an electrolyte, in the Debye
Hiickel limit, confined to the plates. In the limits where the
dipole polarizability becomes infinite or the concentration of
electrolyte becomes infinite, the limiting boundary condi-
tions are Dirichlet. Clearly these two limiting cases mimic a
conducting plate limit but via two distinct physical mecha-
nisms. Here we show that the limit in which the Dirichlet
limit is valid, for large but finite dipole or electrolyte
strengths, depends on the model. In the electrolyte case de-
viations from the Dirichlet limit become apparent at short
interplane separations but in the dipole case deviations ap-
pear for large interplane separations. We also compare the
results for two planes where the field exists in the region
outside—the open system—with the case where the field
does not exist outside—the closed system. This latter case
corresponds to that arising in studies of the critical Casimir
effect where the order parameter field exist within the critical
fluid but not outside the boundaries of the physical system.
The Casimir force in this case can be attractive or repulsive

1539-3755/2009/79(1)/011108(6)

011108-1

PACS number(s): 05.20.—y, 03.70.+k

depending on the boundary conditions at the two confining
plates. However, we show that when the fluctuating medium
exists outside the two plates then the interaction is always
attractive. The case of a third plate confined between two
other plates is also studied in both the open and closed sys-
tems. Here the force acting on the third plate can be evalu-
ated and we find a rich behavior and striking qualitative dif-
ferences between the force on the central plate in the closed
and open system. The method we use to carry out the com-
putations is based on a path integral method adapted to pla-
nar geometries introduced in Ref. [6]. The computations in
this formalism are very short and straightforward and also
have the advantage of highlighting immediately the differ-
ences between open and closed systems.

II. MODEL AND TWO PLATE INTERACTION

We consider a free scalar field theory analogous to that
occurring for electrostatics with a free kinetic term every-
where in space but with additional interaction terms with two
surfaces at z=0 and z=/

H-1 f X[V )+ f dx 8\ 6(00)]
1% 1%

+f dxdz = Df>] p(x)]. (1)
Vv

The terms f| and f, are functionals of the field ¢ on the two
surfaces. Here we distinguish between the coordinate z per-
pendicular to the plates and the coordinates perpendicular to
the z direction denoted by x . In this notation therefore any
point is given by coordinate x=(z,x | ). The field ¢ is defined
on a region of space with x, in a plane of area A and z in the
region [—L,L] and we will be interested in the thermody-
namic limits as A — % and L— 0. Note that the open system
corresponds to the so-called defect plane case [4], as opposed
to the usual case considered in boundary critical phenomena
where the field only exists in the region [0,/]—physically
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the two cases are quite different as we shall see when com-
paring our results to some results in the literature [4,7-10].

We will consider two types of interaction terms. First the
case where the field ¢ is acquires a mass in the plates (type
I), i.e., it has a harmonic self-interaction

flox)]= gdﬂx). 2)

This sort of interaction, for ¢; positive, arises naturally in the
Debye Hiickel theory of electrolytes and the coefficient c; is
proportional to the electrolyte concentration (for example,
see Ref. [6]). When the ¢; are positive this term will suppress
the amplitude of the field ¢ at the plates and we expect that
in the limit ¢;—% we will recover Dirichlet boundary con-
ditions. We could also consider the case where the gradient
of the field ¢ in the plane is energetically suppressed (type
II) via

Hlp] =TV p)P. @)

in this case E | =—iV | ¢ is suppressed and is set to zero in
the limit y;— o°. This is the boundary condition for an elec-
tric field on a conductor. Clearly in both cases (up to an
irrelevant zero mode) the boundary conditions for the two
cases become equivalent in the limit ¢;, y;— . The purpose
of this paper is to explore the modifications of the Casimir
the effect when the coefficients c; are finite. The boundary
interaction term in Eq. (3) actually occurs quite naturally in a
model of surfaces containing dipoles whose dipole moments
are constrained to lie within the plane of the plates. The
electrostatic Hamiltonian is now given by

H= lJ dx[Vp(x)]* + if dx8(2)V | p(x) - Py(x )
2)y v
+ if dx8(z- DV | P(x) - Py(x ) + LJ dx, - P%(XL)
v 2x1Ja

1
+ _f dx - P%(XL)’ (4)
2x2J 4

where —iV ¢ is the electric field and P, , represent uniform
dipole fields, constrained to lie within the plane of the plates,
of polarizabilities y;,. Now integrating the corresponding
partition function over the fields P; and P,, yields an effec-
tive Hamiltonian for the field ¢ with surface interaction
terms of the form (3).

We note that the classical equation of motion for the field
in the electrolyte case induces Robin-type boundary condi-
tions at the surface relating the jump of the field derivative in
the z direction to the value of the field on the surface. In the
case where there is no space in the region external to the two
plates, standard one-sided Robin boundary conditions are ob-
tained and this case has been extensively studied in the lit-
erature [7-10].

In this paper we will use a calculational technique, based
on the Feynman path integral method which has been
adapted to study a variety of problems in electrostatics sys-
tems, the thermal Casimir effect and membrane fluctuations
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[6,11,12]. We proceed by decomposing the field ¢ into its
Fourier components in the plane of x|, i.e., we write

1 ~
b=—2 plk.2)exp(ik - x ). (5)
VA g

The Hamiltonian is now given by

H=, {% f dzldd)(k’z) g k.2) +K2d(k,2) (- k,z)]
k

dz dz

1 ~ ~ 1 ~ ~
+ Egl(k)¢(k,0)¢(— k,0) + Egl(k) Pk, 1) (- k,l)} . (6)

In the case of the scalar interaction (type I) term of Eq. (2)
we have that

gi(k)=c;, (7)

and in the case of the transverse field (type II) interaction
term of Eq. (3) we have

gl(k) :Xikzv (8)

where k=|k|. The resulting field theory is noninteracting and
the modes are all decoupled; we may thus write the partition
function as a product over the partition function of the modes

In(2)= >, In(z), (9)
k

2
Zk=fd[Xk]exp[—§Jdz(dd—)ik+k2X,%>

~Lewx02- §g2<k>xk<z)2} S o

with

where we have decomposed the field ¢ into its real and
imaginary parts and as usual we only take half the sum over
the modes k as the field ¢ is real. Each partition function has
the form of a simple harmonic oscillator path integral with
interaction terms inserted at the times z=0 and z=I[. The path
integral kernel defined as

X(zp)=y
d[X]

X(zy)=x

M (2 [dx?
Xexp ——f dz| — + 0’X? (11)
2, dz

is given explicitly as

K(x,y,21,20,0,M) =

K( M) < Mw )1/2
X,Y,21,32, W, = .
MR 2 sinh[ w(z, — 21) ]

1
Xexp(— E(x2 +y)Mw coth[w(z; — 25)]

+ xyMw cosech[ w(z; — zz)]) . (12)

We now note that in the limit (z,—z;) —
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Mo 1/2 1
K(x,y,21,20,0,M) = (7) eXp(— Ew(22—21)>

Xexp(— %(x2+y2)>. (13)

Thus the initial and final positions become decoupled. There-
fore in the limit L— o0, up to arbitrary terms depending on
the values of the field x(~L) and x(L) we find

k 1
Zy = ('B—>exp<— kL + —kl) f dxdy exp(— éx2
™ 2 2

X[k + gl(k)]>K(x,y,0,l,k,B)eXP(— gyz[k + gz(k)]> .

(14)

This is a trivial Gaussian integral to do and we find that, up
to bulk terms denoted here by B, (independent of [ and the
gi), we have

In(Z,) =B, - %{lnpk +g,(k)] + In[2k + g,(k)]

+1n< __&i(k)ga(k)exp(= 2k0) )} (%)
[2k+ g, (02K +g2k)]) |

The first term, as mentioned above, is a bulk term, the first
term in the square bracket is a surface energy term for each
surface and the final term is the /-dependent term giving rise
to the Casimir interaction. The /-dependent Casimir free en-
ergy is thus given, in a space of total dimension d, by

F() kT [ d"'k ( 81(k)g>(k)exp(= 2k1) )
A 2 ) e T R+ g (012K + g2(0)]
B )12 ﬂ)
—r

g2 __&1(R)gx(K)exp(= 2k]) )
Xf g d"“‘(l 2k + () ][2k+ £2(0)])°
(16)

where I is the Euler gamma function and the subscript o is
to remind us that this is result for an open system.

The first thing to notice is that in the strict limits g, —
and g,— we recover the classical result for Dirichlet
boundary conditions

Fp(D) kpTT'(d - 1){(d)

(1677)(”’_1)/2F(d; 1 )ﬂ-l

where ( is the Riemann zeta function. In the limit where one
of the g; is zero then the result is zero as it should be—this is
a critical difference between the case of defect planes where
the field exists outside the interior of the plates and the case
where it does not exist outside the plates. We note that in a
finite or closed system, where the field ¢ does not exist out-
side the two plates as is the case in studies of the critical
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Casimir force [7-10], the result is somewhat different. In-
deed in this case it is possible to have repulsive as well as
attractive regimes, and moreover there is a residual interac-
tion even in the case where one of the ¢; is set to zero. In this
open case the interaction is always attractive and it vanishes
when either of the c;, not just both, is set to zero. The results
of Refs. [7-10] can easily be recovered in our formalism.
When there is no region exterior to the slab the external
propagators are absent and thus the ground state wave func-
tion at each interface is not there. This means that g; (which
is added to k in our case) is simply replaced by g;—k. Upon
subtraction of the bulk pressure one thus finds a Casimir
force for a closed (hence a subscript ¢) system given by

Fc(l) _ kBT

A (477)(d—1)/21~(d_ 1)
2

i _ [81(k) = K][ga(k) = klexp(~ 2kl))
X f Kk “‘(1 kg Ok+e0] )
(18)

in agreement with the results of Refs. [7-10]. Note that it is
the appearance of the terms g;,—k in the above expression
that give the possibility of repulsive Casimir interactions
[7-10]. The appearance of a repulsive interaction is most
easily seen in the limit g, — % and g,— 0. However we re-
emphasize that the presence of the field in the exterior region
ensures that the interaction is always attractive (for g; posi-
tive).

We now return to the case where the g; are finite, for the
surface interaction term of Eq. (3) (type II) we find that

F,(I) kgT
(4,”_)(d—1)/21—‘<d_ 1 )
2
K2 — 2kl
kad‘zdkln<l—X1X2 exp( )>. (19)
(24 x1k) (2 + x2k)

Clearly in the large / limit the integral above is dominated by
the small k behavior and thus for sufficiently large / the
asymptotic behavior of the free energy is given by

Fo(l) _ kBT
(477) (@12 ( ﬂ)
2

k* exp(- 2kl
xfkd-zdk1n<1-—X1X2 e;(p( )). (20)

Thus at sufficiently large [ the Dirichlet limit is no longer
valid and the Casimir free energy will become dependent on
the ;. In this limit we thus find
F,(l kgTT'(d + 1
()=_ BT ( )X1X2 ’ 1)
16(167T)(d—])/21“(ﬂ)ld+1
2

and thus the strength of the interaction is considerably re-
duced. The large k part of the integral dominates the short
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distance behavior and the interaction thus remains of the Di-
richlet form in this regime. The cross over length between
Dirichlet and this modified long distance behavior is given
by .~ x if the two y; are of the same order. If x; and y, are
very different then there is an even richer behavior and it is
possible to have an intermediate regime where F/A~—1/1%,

Now we consider the case of the (type I) surface interac-
tion (2), here we find that the small k limit agrees with the
Dirichlet limit and thus the long distance behavior of the
interaction in this case is of the Dirichlet form. The fact that
the Dirichlet limit for type-I interactions holds at large / is a
consequence of the fact that ¢;== is a infrared stable fixed
point (for both the free and interacting field theories) [4].
However, the deviations from the Dirichlet case are seen for
large k and thus will show up in the short distance behavior
of the interaction. In this case the Casimir pressure is given
by given by

IFD)

P,(l)=-
===

kBTClC2

2(1677)(‘1_1)/2F<d_ ! )1"—1
2

4 exp(-u)
x f u'du (u+cl)(u+cyl) —crel? exp(—u)
(22)

In the limit of large / the Dirichlet limit is clearly always
good, however, it breaks down at small / when [<1/c;. In
this limit of small [ we obtain (for d=2)

kBTCICZF(d— 1)

P,()=- .
2(1677)("")’2F<d_ 1)1"—1
2

(23)

It is easy to verify that this is a reduction of the Casimir
pressure with respect to the ideal Dirichlet case in the limit-
ing region where it is valid.

III. THREE PLATE INTERACTION

In order to further demonstrate the power of the path in-
tegral method in the context of Casimir interaction we will
consider the case of three plates. We keep two plates [plates
(1) and (3)] at z=0 and z=[ and we will place another plate
between them at z=m. Again we denote the quadratic surface
interaction coefficients by g;(k) where i is the plate number.
The computation for this case within the path integral for-
malism is immediate (it encodes to a certain extent the trans-
fer matrix formalism developed for van der Waals interac-
tions in slab geometries developed in Ref. [13]). The
partition function for the mode Z, is given by
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Zy = ('B—:)exp(— kL + %kl)
X f dxdydz exp(— gxz[k + gl(k)]>
B
XK(x,y,O,m,k,ﬁ)eXP<— Y 82(k)>

XK(y,z,m,l,k,ﬂ)exp(— gzz[k+ g3(k)]). (24)
This yields
1
In(Z;) = B, - 5{111[2/( +g1(k)]

+ In[2k + g,(k)] + In[2k + g5(k) ]}
! m{l __81(K)ga(kexp(~2km)
2 [2k + g1 (K)][2k + g2(k)]
_ 82(k)gs(k)exp(= 2km’")
[2k + g5 (k) J[2k + g3(k)]
81(k)g3(k)(g,(k) — 2k)exp[— 2k(m +m")]
[2k + g1 (k) ][ 2k + g5 (k) ][ 2k + g3(k) ]

(25)

where m'=[—m. The first term is a bulk energy independent
of m and m’, the second corresponds to three independent
surface energies and the third contains the geometry depen-
dent interaction. An important test of the above is that upon
setting g,=0 we recover the two plate result of Eq. (15). The
[ (geometry) dependent part of the Casmir free energy is
given by

F,(m,m") kgT

A (47T)(d—l)/21—~(d_ 1)
2

- 81(k)g>(k)exp(=2km)
8 f e ln{ ' 2k g 0Tk + ga(0)]
_ 82(k)gs(k)exp(= 2km’")
[2k + g5 (k) ][2k + g5(k)]
g1(k)g3(k)[g,(k) — 2k]exp[— 2k(m + m')]
[2k + g (k) J[2k + g, (k) ][22k + g3(k)]

(26)

If we take the Dirichlet limit g;— 0 for all i we obtain that
the free energy is given by

Fp(m,m') = Fp(m) + Fp(m'), (27)

i.e., the sum of the free energies of two independent systems
with Dirichlet boundary conditions whose values are given
by Eq. (17). This result is clearly expected on physical
grounds as strict Dirichlet boundary conditions effectively
decouple to two systems (plate 1 and 2 and plate 2 and 3).
However in the general case we see that there is no decou-
pling and that n-body (plate) interactions are important. We
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also notice that the free energy also becomes equal to the
sum of two independent terms (one dependent on m and the
other on m') in the limit where g, — .

F.(mm’) kgT

A (477)(d—1)/21-*(d_1
2

_ 82(k)[g3(k) — klexp(=2km")
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The case where the system is closed (no exterior field) can
also be analyzed as before. Here we find (simply by replac-
ing g, 3 by g13—k and leaving g, unchanged)

[g1(k) — k]go(k)exp(— 2km)

)f"“d““[l‘

[k + g1 (k) ][2k + g5(k)]

[g1(k) — k][g5(k) — k][ g2(k) — 2k]exp[— 2k(m +m")]

[2k + g>(k) [k + g5(k) ]

We see that as long as g; and g5 are finite then the results for
the open and closed systems are quite different.

Let us consider the case of type-I boundary terms. For the
case where the two outermost plates are fixed at a distance 1
let us define by

kT

Vc,o(x) = Fc,o(x7 1- .X) =A vc,o(-x)7
(47T)(d—1)/2r(d_ ! )
2

(29)

the effective potential felt by the central plate (plate 2). We
restrict ourselves to the symmetric case ¢, =c5; and which we
will vary and we take c,=1, also we shall consider the case
d=3. Shown in Figs. 1(a) and 1(b) are the scaled effective
potentials v (evaluated by numerical integration) for the
cases of open (solid line) and closed systems for ¢;=2 (a)
¢;=c3=10 (close to the Dirichlet limit for the external
plates). We see that for ¢;=c3=2 and ¢,=10 that for an open
system the middle plate is always attracted to the exterior
plates. However for a closed system for c=2 the middle plate
is repelled from the two exterior plates and actually has an

o

T
T

| ! T
I@c=c,=2, =1 ‘ |t (b)c=c,=10,c =1
| : | . i
i 1
| 1 |
! ! o n
1 i
4 1'~ '
" |
! I
H m
' |
=~ |1 o=
o) - — >
s s
! 1
! 1
\ |
LY i
1
\\\ //
N ¥
0 — \\\‘ 777777777777777 ‘/// —
5 l l l l 4 l l l l
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

X X

FIG. 1. Effective potential felt by a plane in the middle of two
fixed planes all with type-I boundary interactions. Solid lines for
open systems and dashed lines for closed systems.

[k-+ g1 (012 + g2 Tk + g5(K)] (28)

equilibrium position at the center of the two plates. For ¢
=10 the closed system has a potential which is close to that
of the open system near the middle of the two plates and the
midpoint is an unstable equilibrium point in both open and
closes systems. However, the closed system develops a re-
pulsive potential close to the plates leading to a stable poten-
tial minima close to each plate. Notice that in the case of
¢1=10 that the deviations from Dirichlet behavior for the
closed system are manifested when the distance between the
central plate and the closest bounding plate is small, this
should be expected from our discussion in Sec. II. If we
consider the case of type-II boundary terms we expect that
deviations from the Dirichlet limit occur at large distances,
We therefore consider a system of three plates again with a
distance of 1 between the bounding plates. This distance
should be large to see an effect and this is achieved by set-
ting the polarizabilites y to be small. Shown in Figs. 2(a) and
2(b) are the scaled effective potentials v for the open (solid
lines) and closed (dashed lines) systems. In Fig. 2(a) we have
set x;=x3=0.1 and x,=0.1. In the case of an open system
the central position is unstable and the middle plane is at-
tracted towards the outer plates. However, for a closed sys-
tem the central point is metastable and there is an energy

0 T

-0.1—

®) x=x:=03,
-0.2

v(x)

v(x)

0.3
0.4

- -05

0 0.2 0.4 0.6 0.8 1 02 03 04 05 06 07 08
X X

FIG. 2. Effective potential felt by a plane in the middle of two
fixed planes all with type-II boundary interactions. Solid lines for
open systems and dashed lines for closed systems.
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barrier which must be crossed to reach the walls (which are
ultimately attractive). If y;=(x3) is increased the local
minima at the midpoint eventually disappears, as shown in
Fig. 2(b), where we have taken y;=0.3, and the two curves
for the open and closed systems are qualitatively the same.

IV. CONCLUSION

In this paper we have studied a free field scalar theory in
the presence of planes which interact quadratically with the
field. In one case (type I) the field acquires a mass on the
plane which suppresses its fluctuations. This would corre-
spond to the way in which an electrolyte confined in the
plane interacts with the thermal fluctuations of the electro-
static field. The second term (type II) is proportional to the
square of the in plane gradient and arises due to dipole in-
teractions with the electrostatic field. In both of these cases if
the strength of the interaction is taken strictly to infinity we
obtain Dirichlet boundary conditions. We have seen, how-
ever, that for finite interactions the interaction between the
two plates deviates from the Dirichlet behavior, at small dis-
tances for type I and at large distances for type II and no
longer has a universal form. We have also seen that for finite
interaction terms there is a clear difference between open
systems (where the fluctuating field exists outside the two
plates) and closed systems (where there is no fluctuating field
outside the plates). Notably for open systems the interactions
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between plates are always attractive, this is in contrast to the
case of closed systems where it has been long established
that both attractive and repulsive interactions are possible
[7-10]. We have also examined the behavior of a third plane
sandwiched between two other planes, this demonstrates
clearly the power of the path integral method used to analyze
Casimir-type interactions in planar systems. Again, whether
or not the system is open or closed can have a drastic influ-
ence on the force experienced by the third (central) plane. In
closed systems the force felt by the central plane can be
attractive or repulsive and even change sign in the same sys-
tem, having positions of local equilibria away from the
bounding walls (both stable and metastable). There are
clearly many other configurations and setups that one can
study with the formalism developed here and it is possible
that some of the basic mechanisms seen here can be ex-
ploited in the design of nanodevices [14] where Casimir-type
forces such as van der Waals interactions play an important
role.
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